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1. overview: artificial versus bio-polymers

artificial polymers biopolymers

statistical 3D structure e definite native 3D structure
hierarchical organized

e sequence: monotonous e sequence:
or statistical complex & definite
no information content with information content
e function through e function through
macroscopic behavior atomic details
e description mostly by e description in
interaction centers atomic detail necessary

per monomer

grid models are sufficient o all degrees of freedom
need to be considered
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2. 1-dimensional ideal chain: random walk in 1%@

example of N=10 . > »

step random walk start < > > end
corresponds to one i > > > R _
polymer conformer 0 1 2 3 4 > X ()

general case: N segments (monomers): 2N conformations, (N is even)
e end-to-end distance: x = 2j: j = =&, £ (5 -1), i(ﬁ—2), .0
L . . N
e number of realizations for given j: (E+ .j; total: Z j = 2N
2 N\

N
 end-to-end distance distribution: p\(j) = 2LN ( j \/— exp(—zj—N

)

transfer to continuum model: j = x, N = <x2>: p..(X) = 7:<1x exp(

x2

chain entropy: S(x) = kg In[p(x)] = Sy - k5757 2]

. _ x2
free energy: F(x) = Fy + kBT—2<X2>

polymer models: 1D model

dynamics:
e assume: each segment changes direction independently obeying

. d(p -R R p p positive . .
2= = orientation
the master equation: it (nj ( R _RJ (nj n negative

eigenvalues: 0 1 -2R corresponds to equilibrium
eigenvectors: %(1, ) @ =D distribution and decaying state

e For a polymer with N segments there are N possibilities to change from
end position x = 2j to one of the two positions x =2(j-1) or x= 2(j+1)
by switching direction of one of the N segments. Hence, we have

Noj } B(() Possibilities to reach a {X = 2(j-1) }

5-i conformation with end position x = 2(j+1)
-4 1 0 0 O
® For N=4 the master eq. reads: 4 -4 2 0 0
d - . R=R|0 3 4 3 0
—P(t) =R -P(t) - 0O 0 2 4 4
dt - 0 0 0 1 —4
The state vector describes the distribution of the end segment with the

initial segment at position 0. Stretched 1D polymer the state vectors are:
P'(t) = (1,0,0......0)  P'(t)=(0,0.......0,1)
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e general case: (R), , = R[(N-mM) 8,1, + M3J ;- N3]
eigenvalues: R, = 0, -2R, -4R, ... .. -2NR

The right side eigenvectors (lsn)In =p,(m)
are obtained with the generating function

G, () =2 (1-2)"(1+2)"" = 3 z"p, (m)

e diagonalization of the rate matrix R with the matrix P,
(P),m = Po(m) of eigenvectors yields

R,=P'RE, R,),,=-n2R3,,

The time evolution is computed as follows: f’(t) = exp(tB)-f’(O)

limP(t) is a binomial distribution.

{—>oo

polymer models: 3D model

3. 3-dimensional ideal chain: random walk in B%W

e composition of independent random walks in x,y,z direction

end-to-end probability distribution p(x) =Wexp(_2<x_;>j

Using the relation: <r2> = <x2>+<y2>+<z2> = 3<x2>

we obtain: p(r) = p()*p(y)*p(2): pI) =(3(r*))”" eXP( ZM

e chain entropy: S(r) = kg In[p(r)] = Sy - ki 23<S>

e free energy: F(r) = E-TS = F, - k,T 23<’S>

3k, T
_<r2> spring constant of ideal chain
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4. real chain (Flory) e

e self-avoiding random walk considers volume of polymer segments
we have <r2> = a2 Nv, v > 1; for standard random walk v = 1.

e computation of v according to Flory: polymer radius: R = (<r2>)1/2

c ~ i concentration of monomers within the volume
RP filled by the polymer in a D dimensional space:

e energy of repulsion between two monomers: FEeP
. ota N
total repulsion energy: F°* ~R°F_~ OLITF

rep rep

= o, Tc?, a>0

elastic R’ total total (otal N’ R’
ener—gy: elastic = (X‘ZTW ener—gy: F = 1:‘;:lastic + Eep = T(xl F + T(x'2 2
a Ftotal N2 a
minimum of F: — =—0,D—F7-+0,—5=0
R T R Na

. . (04
it follows: RP* =a_1Da2N3 and R, ~N"; v =53
2
D 1 2 3 4 The vp from numerical simulations of self-
Vb 1 3/4 | 3/5 | 1/2 avoiding random walks agree with Florys
- theory within 1%. For D=4: ideal chain.
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6. Rouse chain model
describes dynamics of a 3-dimensional ideal chain in viscous liquid

Model: linear chain of monomers of mass m connected by
harmonic springs of force constant k.

e equation of motion with fn position of nt" monomer and frequency o =L

CF = (f, -2 +%,), n=12,...N-2

a2
d2 - 2 - — d2 — _ 2 ,— —
d?lb = (rl _Ib)’ d?rN—l = (rN—Z - N—l)'
e with coupling to a heat bath one obtains the stochastic equation of motion
4> 2 d2 — (T i 17
ThtYEL=0 (r, —2r +1r ) +-—1.
For large friction y>>1 the Newton acceleration term can be neglected.
At the same time the random force f fluctuates much faster ast may

change. Hence, for short time averages 1, = <fn >time we may also neglect
the random force term, yielding:

d & = = = .od7e = 2y, d 3 — = =
ah = (x(rn-H _2rn + rn—l)’ al = (x(rl _Ib)’ i e = OC(I'N_2 _rN—l)

k. - 3 .
where o = mLy and since E<(r“_< L >)2> ZEkBT’ it follows o0 = —
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¢ in matrix notation:

-1 1
d._ ~ 1 2
— (1) = A-T(t) 0 1
dt = A=o| @
=T o= - 0O O
r (t)_(r()7117r27°°°rN_1) 0 0 . .
eigenvalues: «; = 4ovsin® (J—“) ; J=0,1,2, . N-1

eigenvectors: C. = (2—§ ) L-cos|(n+3 )J“ ; Jn=0,1,2,...N-1
jn n,0

The matrix C of eigenvectors generates the transform between N
component elgenstate vectors U, and position vectors ];jof the monomers

of the polymer. chnu n=0,1,2,...N-1, U - i, =9,

1

e distance squared beztween monomer k and k+I-1:
AR =D G600 with a,(1k) =(&)" sin|& (D] sin[£ 2k +1)]
j=0

e time autocorrelation: N-1

&5 0 =(ALLENO) ALLKW®) =D Lal (k) exp(—a; 1

i=0

polymer models: Rouse chain A
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e Rouse chain dynamics :

Autocorrelation function of end-to-end dynamics of a center part of Rouse chain:

L.k 1.k Ik N =210 = 1024
(1) = 95" (D95 (0)
2.0 -
SR
defect diffusion t-0-5
10 = .
= 4 |
:N OO g e-t ]6
A=A N 54
c
—'- E ]O El 25 o
0 nunwer of pxdnomer
S 1024 exp[—(t)°]
T oed O e 1
: - 1 1 R | 1 1 I
S 1.0 3.0 5.0 7.0 9.0

time in units of 1/(4a) log (t)
J. Comp. Chem. 13 (1992) 793-798.
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b3
* Rouse chain dynamlcs . Rouse model length 2*%13

Freie Universitat

0
. +3
Relaxation of an off-center
part of the Rouse chain:
N =21 =8192 log[o5* (1)]
(1) = ¢y (O/95°(0) -6
_9_
—-12 T T
0 3 6 9
log(time)
time in units of 1/(4a)
polymer models: Zimm model o B
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6. Zimm polymer model
Zimm polymer model considers that solute drags solvent along while it moves.
® The velocity field of the solvent around a sphere of mass m and radius b, 4

moving with velocity W, reads according to Landau Lifschitz Bd VI:

3, (F) = =[] + OGF—7,17)
r—1,
I, position of sphere; T position of observer; U unit vector of T —T,

Dragging of solvent by monomer m influgncef, the motion of monomer n.
Averaging &v_(T) over the directions of 1, — T, yields:
1
7 brad

<6?/m(?)> =w_b_, <I* 1q |> =¢tw,_In—ml " with ﬁ = (%) oe, A monomer distance
r—r,
This leads to an extra term in the equation of motion of the Rouse chain:
L=, —2L+5 )+ X <8vm(}:1)>

n#m

= Oc(fm _21; +i§1—1) + @Z lm—n l_i(fmﬂ _2fm +fm—1)

n#m
where for the second equality we used: v_&)/m = (8_)
Rouse
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For an infinite chain a plane wave ansatz can be used:

T (t,k) =exp(ikn—o,t) k wave number o, relaxation rate

inserted in ~ OF, . L . L
eg. of motion 5, ~ 0T, =25, +1,) + ggj m-nl (L, —21,+1,)

yields —0, =« (eik 4ok ~2) 1_{_&2 CXI:[lk(an)]
m#n m-—nl?

— h ~"
for large 2(cosk - 1) — —k? &I%cos(ks) =~/27 &k%
s
0

wave lengths: k- 0

Thus, for small k we have: %‘ =k’ +~/27'C§k% ~ JZTC&](%

® Hence, relaxation of the chain is dominated by hydrodynamic interactions.

® For polymer melts and dilute polymer solutions the Rouse model is applicable.
e For dense polymer solutions the Zimm model is appropriate.

polymer models: reptation

® In dense polymer solutions a polymer chain is imbedded in a tube defined by

polymers in the neighborhood [entanglement effect (Verschlaufung)].
For short times the tube is static and the polymer moves along the tube axis:

called REPTATION by de Gennes.

e example: chain in 2-dim with
fixed point-like obstacles. chain motion with help of defects,
b defect length
OV e o o e o v °
b b

® \Without defects the curve length of the polymer between monomers m and n is
s,—S,=(n-m)a andwe have: <(fn —fm)2> o a’ln-mi|
with v defects we have s,-s, = (n-m)a-vb <(T:l —fm)2> ——— als —s_|
WI (&

defect density per unit length: p = —a(n\im)
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8. Incoherent scattering to explore polymer dynamics
incoherent scattering function:

S(q, ) = 2 [dte S@,t), S@G,t) = <e—i?1f(0) e+i€1f(0)>

in Gaussian approximation with isotropic probe:

S(d.1) = exp{—1q’ ([, () T, (O )}

Using individual polymer beat vectors a_ vyielding T,=),a _ we can write:

m<n

H{[EO-EOF) = (£ (O)IFO) - F(0)]) = > Y[(3.0) &)~ (3,0 & (0))]

Using (3,(03,(0))

Rouse

= S_; I dp e?* ™ exp[—2 1t ol - cosp)]

we obtain %<[fn (-1, (0)]2> =4 fn dp Y. Ye™ ™ {1-exp[-2Itlo(l—cosp)l}

k<n I<n

geometric series: {2[1-cos(p)]}?
Dominant contributions come from small p values, for p—0: 1-cos(p) = p?

40
/e = 2 _ a’ dp —otp? | _ .2
Hence 7<[rn (t) B rn (0)] >R0use - za_ﬂ '[ ?|:1 —° ] =a %t

—oc0

ST,

,vv

Freie Universitat &

polymer models: incoherent scattering

e The general expression is:

“+oo
1/t (-7 2 —a [d|q_ ‘“Pt]
2<[rn(t) rn(O)] >general 2n _'[o p’ |:1 ©
Rouse chain: (0tp)gouse = © P?
2 [at

%<[fn(t) - fn(o)]2> ~a'\=

Rouse

zimm chain:  (O0))zipm = a\/ﬁgk%
20 TOP) =47 on't]

wro

de Gennes reptation model with many independent defects:

HEO-LOF)  =n'bap Do)}

reptation

Was only more recently better verified: PRL 78 (1997) 1595-1595.
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Ann. Rev. Phys. Chem. 35 (1984) 419-435

N : number of monomers in chain
N, : number of monomers between entanglement points

1 T lll”ll | 1 llllrrr 1 | I_Tlr”l I AR T
- 2
- Net/IN°/ 3
. 3
= r ]
W v 1 —
e (N, tN)"2
= [ -
i defect N1/2f1lh ' normal 3
W [ diffusion | | diffusion ofl
< reptation | Rouse Al
N {2 ! P | | whole chain
| [
Lk L OO WY | ] IZLILLLIIB i a1 a0
2
Ne time N N /Ne

realistic polymer models
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Alok Junea: Merging implicit with explicit solvent simulations: Polyethylene glycol

PEG 6: C1\/3\/5\/7\/9\/11\/13\/15\/17\/19
- 2 4 6 8 10 12 14 16 18

end-to-end distance <[d(t)_‘7][d(t+m)_g]>t

correlation V= <[d(l)—67]2>
t
T T T ’”
o L 04 implicit -
10 - 7 = - explicit 10 nt ’
solvent -7
« rd
implici = .7 _t%
10-1 - solvent I 3‘: 10 | exglicif e
t \% _solvent
c; t'd
2 2
24----- ES I ]
_ 10
1 0 |Sffnal_r-6(0.9)
|Sfmal_’Y (-6)
l l l : I ;
0 1 2
10 10 10 10° 10’ 10°

At (ps) At (ps)
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