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We evaluate the performance of common substitutiatrices with respect to structural similarities.
For this purpose, we apply an all-versus-all paierdequence alignment on the ASTRAL40 dataset,
consisting of 7290 entries with a pairwise sequeidiemtity of at most 40%. Afterwards, we
compare the 100 highest scoring sequence alignnertieir corresponding structural alignments,
which we obtain from our structure alignment dasgh@®ur database consists of about 18.6 million
pairwise entries. We calculated these alignmentafplying the current version of GANGSTA, our
non-sequential structural alignment tool, on ab@@t million pairs. The results illustrate the
difficulty of homology based protein structure prwn in cases of low sequence similarity.
Further, the large fraction of structurally simifamoteins in the ASTRAL40 dataset is quantitatively
measured. Thereby, this investigation yields a messpective on the topic of sequence and
structure relation. Hence, our finding is a largale quality measure for any sequence based
method, which aims to detect structural similasitie
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1. Introduction

Protein sequence alignment plays a key role ininhiestigation of protein functionality
[4, 12]. The protein sequence determines the streicand through it the protein’s
function. Similar sequences often share similacstires. However, the opposite is not
the case since similar structures can be encodeddissimilar sequences [11].
Shakhnovich et al. analysed this issue in terms ‘fee energy landscape” in sequence
space. During evolution of a protein sequence, aratid residues are deleted, inserted
or replaced by others. This process of sequeneérgjtcan lead to cross “barriers” and
to seed new local minima in sequence space. In sase&s the new minima correspond to
similar structures, which are conservative wittpezs to the protein’s function. Here, the
mutations in sequence do not cause an unsatisfastarctural change at functionally
relevant protein sites. Hence, the structural comsion for specific sites is higher than
the sequential conservation. These properties giiesee and structure coherence can
lead to difficulties in the application of commoegsience alignment methods. Current
strategies are based on substitution matrices,hwduie applied for measuring sequence
similarities [8, 9]. However, the most common sith8bn matrices like PAM (point
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accepted mutations) [2] and BLOSUM (blocks substitu matrix) [3] are based on

preliminary sequence alignments of mainly similestpin sequence sections. Therefore,
they are biased towards sequentially conservedmegiDespite these difficulties, many
protein structure prediction methods apply a prglary homology search in sequence
databases [13]. In general, this process consistbowr steps. First, the sequence
homologue for a known sequence but unknown straciar searched. Then, both

sequences are aligned. Afterwards, the backboniigeesof the known structure are

transferred to the other, based on the residuéngaon sequence level. Finally, the
sidechains are added to the model. Certainly, ithia very effective and promising

approach in case of high sequence similarity. Unfately, this search for structural

properties based on sequence analysis becomesogabst when applied on distantly

related sequences.

Sauder et al. performed an analysis with the strattalignment tool CE [9], the
sequence alignment tool BLAST [8] and others. Thality of these methods on distantly
related sequences is not known, yet [13]. In cehti@ the current work, they measured
the sequence alignment performance on sequenteadhsf structure level. Further, the
employed dataset was smaller. Sitbon et al. alggiegb an integrated analysis on
sequence and structure information to determinednservation of residues with respect
to secondary structure elements. They found tHatdseand turns are underrepresented in
conserved regions, in contrast to sheets, whicloegerepresented. With respect to loops,
they detected similar amounts in conserved and nswwed regions [4]. Further,
Domingues et al. set up a benchmark protocol fgueece alignment algorithms with
respect to threading. Thereby, they differ betwiaal and global sequence alignment
approaches. They claim that the alignments cortstluwith a combination of sequence
alignment, atom pair interactions and protein saivateractions are the most accurate.
They evaluated the alignment quality by comparhgresidue pairings between structure
and sequence alignment results. Thereby, the &owhblobal alignments performed quite
similar. Additionally, they claim that the amount imcorrectly aligned residues with
respect to the structural alignments is high foakgorithms [12].

In this paper, we evaluate the performance of commgbstitution matrices in
detecting structural similarities. Therefore, weptoy the ASTRAL40 dataset. The set
consists of 7290 protein chains, which share Ibss t40% sequence identity. The
sequences and the structures are available onihelf a first step, we align the
sequences of each ASTRAL40 entry on the completgiesee set with FASTA [7].
Thereby, we retrieve the list of the 100 highestkeal protein pairs for each entry (as
SCOP 1.69 codes [6]). Then, we select the correpgrstructural scores (SC) of these
pairs from our structure alignment database (SDRis Tprocedure is applied in
combination with BLOSUM50, BLOSUMG62 and PAM120. Thesulting structural
scores (SC) are plotted in figure 6. Additionathye 100 highest structural scores (SC) for
each ASTRALA40 entry are selected from our strucalignment database and plotted as
reference, respectively as upper performance |@iitce, our structure alignment method
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is able to detect non-sequential similarities betwivo protein structures we additionally
plotted the sequential structure alignments seplgrat

2. Methods
2.1. Sequence alignment

Currently, the most popular sequence alignmentstaoé FASTA [7] and BLAST [8].
Both employ a set of substitution matrices to sdbeesequence alignment results. The
most commonly used matrices are PAM and BLOSUMhBDatrix types are calculated
on the basis of prior gapless sequence alignmémtgally the observed substitution
frequenciesy; are obtained by counting all of the aligned ansna pairsj. Further, the
occurrence frequengy of each amino acidis calculated. Finally, the log-odds ratio of
the substitution frequencies against the backgradisttibution of the amino acids is
evaluated for each pair. The scefés then written as

si = (n—-)/ )
PP

with lambda [5] the scaling parameter. This procedyields a symmetrical 20x20

substitution matrix. Sequence alignments are sc@a®dummation of the; values,

corresponding to the aligned amino acid pdirSince the scores employ a logarithmic

scale, this is equivalent to the multiplication a&ino acid occurrence probabilities

against the background distribution under the ietelence assumption [5].

2.2. Structure alignment scoring

The basis of the structure alignment evaluatiothés structure alignment score (SAS),
which has been proposed by Kolodny et al. [10]sT®dore weights the RMSD of the C-
alpha atoms by the number of structurally aligresidues\yigneq (SE€ EqUation 2).

sas= RMSDILOO @

aligned

Linear scaling yields the structural score (SC)icWwtwe define in this investigation
to evaluate the structural similarity between twotgins. The structural score is defined
as

SC =100 -2 * SAS 3)
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Figure 1 The plot shows the range of structural scores @Cunction of RMSD and the number of aligned
residues (structural scoring scheme).

Figure 1 shows the range of the structural scorsugethe RMSD and the amount of
aligned residues.

2.3. Structure alignment database

Setting up the structure alignment database (SEplved the evaluation of all
ASTRAL40 (7290 entries) pairs, which leads to ab®@itmillion structural alignments.
These have been calculated with our non-sequesttiadture alignment method based on
maximizing the GANGSTA score [1]. In contrast taggence alignment methods the
structural alignment does not incorporate aminadl ddientities, but crystallographic
protein details. Our method is designed to igndre $equential order of secondary
structure elements in protein chains. Additionalhe method ensures that alignments are
always topologically correct, such that only se@gdstructure elements of the same type
are aligned on each other. Thereby, we attemptagmtuce the biologically relevant
similarities between two proteins more accurately.

After evaluation, we kept the highest scoring atigmt of each pair with a structural
score (SC) above 30 and at least 50% of the seppsttacture elements in the smaller
of both proteins aligned. This amounts to abou® 18illion protein pairs. From them,
about 450.000 pairs have a structural score ab@&gSZ). Thus on average, each
ASTRALA40 entry shares very high structural simtiag with about 60 other proteins.
About 7.15 million pairs score above 80 (SC), whinlicates significant structural
similarities between each ASTRAL40 entry and 98@oproteins in average (about 13%
of the ASTRAL40 set). Figure 2 shows the distribntiof structural scores for the
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structure alignment database. About 7% (in totaluad.2 million) of all alignments are
sequential, such that the secondary structure elsnage aligned in sequence direction.

Protein pairs (in million)
o = N W b a o N o«
A A S P

30-40 40-50 50-60 60-70 70-80 80-90 90-100
Structural score (SC)

Figure 2 Structural score (SC) histogram in our structlignenent database (SD).

The highest scoring pairs afiendah (= SCOP code) wittbbkh_ (SC = 0.99,
RMSD= 0.50 A, Naigned = 337) in the sequential aridw8a_ with 1v6sa_ in the non-
sequential entriesSC= 0.99,RMSD= 1.27 A,Na.igned= 323) (see figure 3). The highest
amount of residues has been aligned in sequeneetidin betweeriogya2 and2napa2
(SC= 0.99,RMSD= 1.07 A, Naigned = 512). Figure 4 illustrates a case of non-sedalkent
alignment bylerja_andlmilxa4 (SC= 0.98,RMSD= 1.59 A, Naigned= 180). About half
of the secondary structure elements are aligneesaquentially.

Figure 3 Non-sequential alignment between 323 residues fttwi8a_ and 1v6sa_ with a RMSD of 1.27A.
With respect to sequence direction, the initiabéhsecondary structure elements (SSE) of 1v6saaligred
on the last three elements of 1fw8a_. Secondaungtstre elements in dark, loops in light grey.
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Figure4 Non-sequential structure alignment betwierja_ and1mixa4 with 180 residues at 1.59A. About
half of the secondary structure elements are mgned in sequence direction. Secondary structemehts in
dark, loops in light grey.

3. Reaults

Initially, all-versus-all sequence alignments aerfprmed on the ASTRAL40 dataset
with FASTA. The highest ranking 100 sequences &gt kor each entry. This yields
7290 sets of 100 sequentially high scoring entiysp@E< 729000). Then, we select the
structural scores (SC) for each of these pairs foam structure alignment database.
Figure 5 illustrates this data acquisition procasd figure 6 shows the distribution of the
corresponding structural scores plotted for FASTith\BLOSUMS50. This evaluation has
also been done with BLOSUM62 and PAM120. Since glaige almost identical results,
only the BLOSUMS50 plot is shown. Additionally, wéofted the 100 highest structural
scores available for each entry from our databasesfgrence. The reference plot is an
upper performance limit for the sequence alignm@&ihce, the secondary structure
elements can be disordered in terms of sequeneetidin (non-sequential alignments),
we plotted the highest structural scores of theeiguential structural alignment entries
separately. The distribution of sequential entiyres has its mode at 85 (SC).

Most of the reference scores are above 80 (SCjrenthode (about 17%) is at about
92 (SC). As mentioned in section 2.3., this indisasignificant structural similarities
among the ASTRAL40 entries. The sequence alignnwgtit FASTA was able to
determine the structurally most similar proteinrpdB5C >= 98). Furthermore, in most of
these cases the corresponding structure alignmemtanged in sequence direction, more
precisely these are sequential structure alignn(sets dashed line in figure 6). However,
only a small fraction of protein pairs scores ie tflange between 93 and 98 (SC). The
mode (~ 4%) of accepted scores is at about 81 (@afnrtunately, for about 25% of the
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high ranking protein sequence pairs only veryeliitructural similarity (SC < 30) could
be detected by our structure alignment method.

Pairwise sequence List of similar

alignment pairs
Plot pair related
ASTRAL40 structural scores
dataset > N\
Structure
Pairwise structure Alignment
alignment Database (SD) Plot highest Plot highest structural
structural scores scores available (for in
available sequence entries only)
> B R

Figure 5 This figure illustrates the data acquisition psxéy usage of sequence (dark) and structure )(light
alignments. As result the structural score distidns, according to the structural alignment daseb@&D), are
plotted. Additionally, the sequential structuregalinent entries are plotted separately.
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Figure 6 Structural score distribution for similar proteiaigs with respect to sequence (dark) and structure
(light). The dashed line is related to the seqaérsiructure alignments, in which the secondarycstire
elements of two proteins are aligned in sequeneetitn.

4. Discussion

The application of sequence alignment methods otepr science aims to reproduce
structural similarities. Therefore, structure afiggnt methods, incorporating

crystallographic details, are applied as a “gotthdard” with respect to protein sequence
alignment methods [14]. Since in many cases notargiructure is known, sequence
alignment is a promising and essential approachtierfirst step in protein structure

prediction.
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However, the results illustrate the difficulties sfquence alignment approaches in
cases of low sequence similarity to already knowotgin structures. The sequence
alignment method is able to reproduce the strutjunaost similar protein pairs, but in
25% of all high ranking FASTA results only verytlit structural similarity could be
detected. This is related to the simplificatiortted model, since the sequence alignment
method only incorporates the primary structure. ifiddally, the sequence alignment
method employs substitution matrices, which aresddatowards conserved sequence
segments. The structural alignment does not ingatpoamino acid identities and the
ASTRAL40 consists of distantly related sequencely.ohlowever, we applied the
sequence alignment method only to produce pais It “similar” proteins. The
evaluation of the similarities proceeded withowdirig any further information from the
sequence alignment into account (e.g. score, resahsignment). Unfortunately, the
recognition performance of structural similaritissow.

The fraction of sequential with respect to the sequential entries is at only about
7% (see details in 2.3.). Therefore, further inigedions must be done to accurately
measure the advantage of non-sequential versusersgju structure alignments.
However, the results indicate a qualitative and ntjtetive gain through the non-
sequential structure alignment approach. A reasothfs can be the biochemical process
of splicing. Furthermore, other genetic operations reorder sequence segments [15].
Hence, our database incorporates relations betwesains and protein families, which
are less constrained by these processes. Evaluhtsg relations can be useful to detect
alternative structures and thereby support and am®rprotein structure prediction
methods. Further, the database can be appliedfa®mee for other sequence based
approaches.
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